93 research outputs found

    Clinically recognizable error rate after the transfer of comprehensive chromosomal screened euploid embryos is low

    Get PDF
    ObjectiveTo determine the clinically recognizable error rate with the use of quantitative polymerase chain reaction (qPCR)–based comprehensive chromosomal screening (CCS).DesignRetrospective study.SettingMultiple fertility centers.Patient(s)All patients receiving euploid designated embryos.Intervention(s)Trophectoderm biopsy for CCS.Main Outcome Measure(s)Evaluation of the pregnancy outcomes following the transfer of qPCR-designated euploid embryos. Calculation of the clinically recognizable error rate.Result(s)A total of 3,168 transfers led to 2,354 pregnancies (74.3%). Of 4,794 CCS euploid embryos transferred, 2,976 gestational sacs developed, reflecting a clinical implantation rate of 62.1%. In the cases where a miscarriage occurred and products of conception were available for analysis, ten were ultimately found to be aneuploid. Seven were identified in the products of conception following clinical losses and three in ongoing pregnancies. The clinically recognizable error rate per embryo designated as euploid was 0.21% (95% confidence interval [CI] 0.10–0.37). The clinically recognizable error rate per transfer was 0.32% (95% CI 0.16–0.56). The clinically recognizable error rate per ongoing pregnancy was 0.13% (95% CI 0.03–0.37). Three products of conception from aneuploid losses were available to the molecular laboratory for detailed examination, and all of them demonstrated fetal mosaicism.Conclusion(s)The clinically recognizable error rate with qPCR-based CCS is real but quite low. Although evaluated in only a limited number of specimens, mosaicism appears to play a prominent role in misdiagnoses. Mosaic errors present a genuine limit to the effectiveness of aneuploidy screening, because they are not attributable to technical issues in the embryology or analytic laboratories

    A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    Get PDF
    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. Β© 2013 Kaabinejadian et al

    Proteome Sampling by the HLA Class I Antigen Processing Pathway

    Get PDF
    The peptide repertoire that is presented by the set of HLA class I molecules of an individual is formed by the different players of the antigen processing pathway and the stringent binding environment of the HLA class I molecules. Peptide elution studies have shown that only a subset of the human proteome is sampled by the antigen processing machinery and represented on the cell surface. In our study, we quantified the role of each factor relevant in shaping the HLA class I peptide repertoire by combining peptide elution data, in silico predictions of antigen processing and presentation, and data on gene expression and protein abundance. Our results indicate that gene expression level, protein abundance, and rate of potential binding peptides per protein have a clear impact on sampling probability. Furthermore, once a protein is available for the antigen processing machinery in sufficient amounts, C-terminal processing efficiency and binding affinity to the HLA class I molecule determine the identity of the presented peptides. Having studied the impact of each of these factors separately, we subsequently combined all factors in a logistic regression model in order to quantify their relative impact. This model demonstrated the superiority of protein abundance over gene expression level in predicting sampling probability. Being able to discriminate between sampled and non-sampled proteins to a significant degree, our approach can potentially be used to predict the sampling probability of self proteins and of pathogen-derived proteins, which is of importance for the identification of autoimmune antigens and vaccination targets

    Determination of Cellular Lipids Bound to Human CD1d Molecules

    Get PDF
    CD1 molecules are glycoproteins that present lipid antigens at the cell surface for immunological recognition by specialized populations of T lymphocytes. Prior experimental data suggest a wide variety of lipid species can bind to CD1 molecules, but little is known about the characteristics of cellular ligands that are selected for presentation. Here we have molecularly characterized lipids bound to the human CD1d isoform. Ligands were eluted from secreted CD1d molecules and separated by normal phase HPLC, then characterized by mass spectroscopy. A total of 177 lipid species were molecularly identified, comprising glycerophospholipids and sphingolipids. The glycerophospholipids included common diacylglycerol species, reduced forms known as plasmalogens, lyso-phospholipids (monoacyl species), and cardiolipins (tetraacyl species). The sphingolipids included sphingomyelins and glycosylated forms, such as the ganglioside GM3. These results demonstrate that human CD1d molecules bind a surprising diversity of lipid structures within the secretory pathway, including compounds that have been reported to play roles in cancer, autoimmune diseases, lipid signaling, and cell death

    Functional analysis of frequently expressed Chinese rhesus macaque MHC class I molecules Mamu-A1*02601 and Mamu-B*08301 reveals HLA-A2 and HLA-A3 supertypic specificities

    Get PDF
    The Simian immunodeficiency virus (SIV)-infected Indian rhesus macaque (Macaca mulatta) is the most established model of HIV infection and AIDS-related research, despite the potential that macaques of Chinese origin is a more relevant model. Ongoing efforts to further characterize the Chinese rhesus macaques’ major histocompatibility complex (MHC) for composition and function should facilitate greater utilization of the species. Previous studies have demonstrated that Chinese-origin M. mulatta (Mamu) class I alleles are more polymorphic than their Indian counterparts, perhaps inferring a model more representative of human MHC, human leukocyte antigen (HLA). Furthermore, the Chinese rhesus macaque class I allele Mamu-A1*02201, the most frequent allele thus far identified, has recently been characterized and shown to be an HLA-B7 supertype analog, the most frequent supertype in human populations. In this study, we have characterized two additional alleles expressed with high frequency in Chinese rhesus macaques, Mamu-A1*02601 and Mamu-B*08301. Upon the development of MHC–peptide-binding assays and definition of their associated motifs, we reveal that these Mamu alleles share peptide-binding characteristics with the HLA-A2 and HLA-A3 supertypes, respectively, the next most frequent human supertypes after HLA-B7. These data suggest that Chinese rhesus macaques may indeed be a more representative model of HLA gene diversity and function as compared to the species of Indian origin and therefore a better model for investigating human immune responses

    Auditory and Visual Health after Ten Years of Exposure to Metal-on-Metal Hip Prostheses: A Cross-Sectional Study Follow Up

    Get PDF
    Case reports of patients with mal-functioning metal-on-metal hip replacement (MoMHR) prostheses suggest an association of elevated circulating metal levels with visual and auditory dysfunction. However, it is unknown if this is a cumulative exposure effect and the impact of prolonged low level exposure, relevant to the majority of patients with a well-functioning prosthesis, has not been studied. Twenty four male patients with a well-functioning MoMHR and an age and time since surgery matched group of 24 male patients with conventional total hip arthroplasty (THA) underwent clinical and electrophysiological assessment of their visual and auditory health at a mean of ten years after surgery. Median circulating cobalt and chromium concentrations were higher in patients after MoMHR versus those with THA (P<0.0001), but were within the Medicines and Healthcare Products Regulatory Agency (UK) investigation threshold. Subjective auditory tests including pure tone audiometric and speech discrimination findings were similar between groups (P>0.05). Objective assessments, including amplitude and signal-to-noise ratio of transient evoked and distortion product oto-acoustic emissions (TEOAE and DPOAE, respectively), were similar for all the frequencies tested (P>0.05). Auditory brainstem responses (ABR) and cortical evoked response audiometry (ACR) were also similar between groups (P>0.05). Ophthalmological evaluations, including self-reported visual function by visual functioning questionnaire, as well as binocular low contrast visual acuity and colour vision were similar between groups (P>0.05). Retinal nerve fibre layer thickness and macular volume measured by optical coherence tomography were also similar between groups (P>0.05). In the presence of moderately elevated metal levels associated with well-functioning implants, MoMHR exposure does not associate with clinically demonstrable visual or auditory dysfunction

    Activation and Oxidation of Mesitylene C–H Bonds by (Phebox)Iridium(III) Complexes

    Full text link
    • …
    corecore